REFERENCES

1. DEPRIT A., Free rotation of a rigid body studied in the phase plane. Amer. J. Phys., Vol. 35, No. 5, 1967.
2. DEMIN V.G. and KISELEV F.I., On the periodic motions of a rigid body in a central Newtonian field. PMM Vol. 38, No. 2, 1974.
3. HORI G. , Theory of general perturbetion with unspecified canonical variables. Publ. Astron. Soc. Japan, Vol. 18, No. $4,1966$.
4. ARKHANGEL'SKII YU.A., Analytical Dynamics of a Rigid Body. Moscow, Nauka, 1977.

ON THE STUDY OF RANDOM OSCILLATIONS IN NON-AUTONOMOUS MECHANICAL SYSTEMS USING THE FOKKER-PLANCK-KOLMOGOROV EQUATIONS*

NGUEN DONG AN

A method of integrating the Fokker-Plank-Kolmogorov equations (Fpke: used
In the theory of random oscillations/l-4/is proposed. The Duffing
equetion is first studied as an example. The method is then used, together
with the method of averaging, to study random oscillations of non-autonomous
mechanical systems with one degree of freedom wher the eigenfreguency varies
in a random manner. The van-der-Pol equation is considered for the case
of a randomly varying eigenfrequency and periodic parametric excitation.
When the function sought is replaced, the FPKE transform into another
equation whose trivial solutions have the corresponding particular solutions
of the FPKE. The condition of integrability of the FPKE is obtained as
the direct consequence of the change in question.

1. Consider a mechanicai system with one degree of freedon, whose motion is described by the following stochastic equation:

$$
\begin{align*}
& x^{\prime \prime}-\omega^{2} z=f\left(x, z^{\prime}\right)-\sigma_{i}^{\prime}(t) \tag{1.1}\\
& f\left(z, x^{\prime}\right)=\sum_{s=1}^{m} a_{;} \sum_{i, j=0}^{i-j=} \gamma_{i j} x^{i} x^{\prime}: \quad \alpha_{s^{\prime}} r_{i j}=\mathrm{const} \tag{1.2}
\end{align*}
$$

whexe for is a ranaom, winte noise-type action of unit intensity. using the sutstitution

$$
\begin{equation*}
x=a \cos \psi \cdot x^{*}=-a \omega \sin \psi \tag{1.2}
\end{equation*}
$$

and the Itc formila, we rejuce Eg. M. D to the form $/ 4 /$

$$
\begin{align*}
& d a=-\frac{1}{\omega} f(a \cos \psi,-a w \sin \psi) \sin \psi^{4}-\frac{5^{2}}{2 a \omega^{2}} \cos \psi^{2}, d t- \tag{1,4}\\
& \frac{5}{\omega} \sin 4 d t(t) \\
& d \psi=\left[\omega-\frac{1}{a \omega} j(a \cos \psi .-a \omega \sin \psi) \cos \psi-\frac{\sigma^{2}}{a^{2} \omega^{2}} \sin \psi \cos \psi\right] a t- \\
& \frac{0}{a \omega} \cos \psi d(t)
\end{align*}
$$

Let us write the FPNE corresponaing to system (1.4) for the stationary probability density of the amplitude ano phase $W(a, \psi)$

$$
\begin{align*}
& \frac{\partial}{\partial a}\left[B_{1}(a, \psi) W\right]+\frac{\partial}{\partial \psi}\left[B_{2}(a, \psi) H\right]=\frac{1}{2}\left\{\frac{\partial^{2}}{\partial a^{2}}\left[B_{11}(a, \psi) H\right] \perp\right. \tag{1,5}\\
& \left.2 \frac{\partial^{2}}{\partial a \partial \psi}\left[B_{12}(a, \psi) W\right]+\frac{\partial^{2}}{\partial \psi^{2}}\left[B_{22}(a, \psi) H\right]\right\}
\end{align*}
$$

Taking into account the expression for $f\left(x, x^{*}\right)(1,2)$, we obtain

$$
\begin{equation*}
B_{x}(a, \psi)=-\frac{\sin \psi}{\omega} f\left(a \cos \psi,-a(\omega \sin \varphi)+\frac{s^{z} \cos ^{z} \psi}{2 \omega^{2} a}=\frac{\theta^{2} \cos ^{2} \psi}{2 \alpha)^{2}} a^{-1}+\sum_{s=1}^{m} A_{s}(\psi) a^{*}\right. \tag{1,6}
\end{equation*}
$$

*PrikI.Matem.Mekhan., 49,3,506-512,1985

$$
\begin{aligned}
& A_{i}(\psi)=\alpha_{i} \sum_{i, j=0}^{i+j=\sharp} \gamma_{i j}(-\omega)^{j-1} \cos ^{i} \psi \sin ^{j+1} \psi \\
& B_{2}(a, \psi)=\omega-\frac{\sigma^{2} \cos \psi \sin \psi}{\omega^{2} a^{2}}-\frac{\cos \psi}{a \omega} f(a \cos \psi,-a \omega \sin \psi)= \\
& \omega-\frac{\sigma^{2} \cos \psi \sin \psi}{\omega^{2}} a^{-2}+\sum_{i=1}^{m} D_{i}(\psi) a^{s-1} \\
& D_{1}(\psi)=\sigma_{s} \sum_{i, j=0}^{i+j=s} \gamma_{i j}(-\omega)^{j-1} \cos ^{i+1} \psi \sin ^{j} \psi \\
& B_{11}(a, \psi)=\frac{\sigma^{2}}{\omega^{2}} \sin ^{2} \psi, \quad B_{12}(a, \psi)=\frac{\sigma^{2} \sin \psi \cos \psi}{a \omega^{2}} \\
& B_{22}(a, \psi)=\frac{\sigma^{2} \cos ^{2} \psi}{a^{2} \omega^{2}}
\end{aligned}
$$

Let us make the substitution

$$
\begin{equation*}
W(a, \psi)=\exp \{\Phi(c, \psi)\} \tag{1.7}
\end{equation*}
$$

Taking into account the identities

$$
\frac{1}{\Pi} \frac{\partial W^{-}}{\partial a}=\frac{\partial \Phi}{\partial a}, \quad \frac{1}{\Pi} \frac{\partial^{2} I W^{-}}{\partial a \dot{\partial} \psi}=\frac{\partial \Phi}{\partial a} \frac{\partial \Phi}{\partial \psi}+\frac{\partial^{2} \Phi}{\partial a \dot{\partial} \psi}
$$

we transform Eq. (2.5) to the form

$$
\begin{align*}
& \left(\frac{\partial B_{1}}{\partial a}+\frac{\partial B_{2}}{\partial \psi}-\frac{\partial \partial B_{12}}{\partial \psi \partial a}-\frac{1}{2} \frac{\partial^{2} B_{22}}{\partial \psi \psi^{2}}\right) \div\left(B_{1}-\frac{\partial B_{12}}{\partial \psi}\right) \frac{\partial \Phi}{\partial a}+ \tag{1.8}\\
& \left(B_{2}-\frac{\partial B_{12}}{\partial a}-\frac{\partial B_{22}}{\partial \psi}\right) \frac{\partial \Phi}{\partial \psi}-\frac{B_{11}}{2}\left[\left(\frac{\partial \Phi}{\partial a}\right)^{2}+\frac{\partial 2 \Phi}{\partial a^{2}}\right]- \\
& B_{12}\left[\left(\frac{\partial \Phi}{\partial a}\right)\left(\frac{\partial \Phi}{\partial \psi}\right)+\frac{\partial 2 \Phi}{\partial a \dot{\partial} \psi}\right]-\frac{B_{22}}{2}\left[\left(\frac{\partial \Phi}{\partial \psi}\right)^{2}+\frac{\partial^{2} \Psi}{\partial \psi^{2}}\right]=0
\end{align*}
$$

The problem consists of solving the non-linear partial differentiai equation (1.8) whose coefficients are found from (1.6). First we note that the amplitude a, in Eq. (1.8) with the coefficients (1.6), can play the part of the generalized ignorable coordinate /5-7/ (the coefficients of the equation are polyromials with integral powers of the amplitude a). Consequently, using the method of expansion in series in terms of the generalized ignorable cooranate $/ 5-7 /$, we can also find the solution of (1.8) in $\partial \Phi / \bar{\circ}$ a ir the form of a polynomial containing integral powers of the amplitude a. Then we have

$$
\begin{equation*}
\Phi(a, \psi)=\ln c+\ln a+\sum_{i=1}^{\infty} \mu_{:}(\psi) a i, \quad c=\text { const, } \quad c>0 \tag{1.9}
\end{equation*}
$$

Substituting the expressicns for Φ from 1.9 ; and for the coefficients $B_{1}, B_{2}, B_{11}, B_{12}, B_{22}$ fror. (1.6) into (2.8 !, and equating the cofficients of $a^{-8}, a^{-1}, a^{0}, a^{2} \ldots$, we obtair the fcilowing set of equations for the unknown $\mu_{1} . \mu_{2} . \mu_{3} \ldots$.. la frime denctes differentiation with respect to $4)$

$$
\begin{align*}
& \frac{s^{2}}{2 \omega^{2}}\left(\cos 2 \psi-2 \sin ^{2} \psi\right)+\frac{\sigma^{2}}{2 \omega^{2}}\left(2 \sin ^{2} \psi-\cos ^{2} \psi\right)=0 \tag{1.10}\\
& \frac{\sigma^{2} \cos ^{2} \psi}{2 \omega^{2}}\left(\mu_{1} \div \mu_{2}{ }^{\prime \prime}\right)=0 \\
& \frac{s^{2}}{\omega^{2}}\left(\frac{\cos ^{2} \psi}{2} \mu_{z^{\prime \prime}} \div \sin \psi \cos \psi \mu_{z^{\prime}} \div \mu_{2}\right)=2 A_{1}\left(\psi^{\prime}\right)-D_{1^{\prime}}\left(\psi^{\prime}\right)- \\
& \frac{s^{2}}{\omega^{2}}\left[\frac{\sin ^{2} \psi}{2} \mu_{i^{2}} \div \frac{\cos ^{2} \psi}{2} \mu_{1}{ }^{\prime 2}+\sin \psi \cos \psi \mu_{1} \mu_{1}{ }^{\prime}\right. \text {] } \\
& \frac{\sigma^{2}}{\omega^{2}}\left(\frac{\cos ^{2} \psi}{2} \mu_{3}{ }^{n}+2 \sin \psi \cos \psi \mu_{3} \div \frac{3\left(1-\sin D^{2} \psi\right)}{2} \mu_{3}\right)= \\
& 3 A_{2}(\psi)+D_{2}^{\prime}(\psi)-A_{1}(\psi) \mu_{1}-\frac{\sigma^{2}}{\omega^{2}}{ }^{2} \sin ^{2} \psi \mu_{1} \mu_{2}-\cos ^{2} \psi \mu_{1}^{\prime} \mu_{2}+ \\
& \left.2 \sin \psi \cos \psi \mu_{1}{ }^{\prime} \mu_{2}+\sin \psi \cos \psi \mu_{2}{ }^{\prime} \mu_{1}\right]+\left(\omega-D_{1}(\psi)\right) \mu_{1}{ }^{\prime} \\
& \frac{\sigma^{2}}{\omega^{2}}\left(\frac{\cos ^{2} \psi}{2} \mu_{n+2}^{\prime \prime}-(n-1) \sin \psi \cos \psi \mu_{n+2}^{\prime} \div\right. \\
& \left.\frac{n \div 2}{2}\left(1-n \sin ^{2} \psi\right) \mu_{n-2}\right)=(n-2) A_{n-1}(\psi)+ \\
& D_{n,-1}^{\prime}(\psi)-\sum_{i, s=1}^{i+s=r i+1}\left[i A_{i}(\psi) \mu_{i}-D_{s}(\psi) \mu_{i}^{\prime}\right]- \\
& \left.\omega \mu_{n}^{\prime}-\frac{\rho^{2}}{\omega^{2}} i \frac{\sin ^{2} \psi}{2} \sum_{i, j=1}^{i+j=n+2} i \mu_{i} \mu_{j}-\sin \psi \cos \psi \sum_{i, j=1}^{i+j=n-2} i \mu_{i} \mu_{j}+\frac{\cos \varepsilon^{2}}{2} \sum_{i, j=1}^{i+j=n+2} \mu_{i}^{\prime} \mu_{j}^{\prime}\right], n=2.3, \ldots \\
& A_{k}(\psi), D_{k}(\psi)=0, k=m+1, m \div 2, \ldots
\end{align*}
$$

The differential equations of this system are separable in μ_{i} and enable ahl the μ_{1}, μ_{2} μ_{3}, \ldots to be found in succession. The arbitrary integration constants must be chosen from the condition for the functions $\mu_{1}(\psi)$ to be the periodic. The problem of the convergence of the series (1.9) is not easy, and system (1.10) must, in general, be considered separately.

We shall merely note that the problem of convergence does not arise in cases when system (1.10) admits of an exant solution of the form

$$
\mu_{i}=q_{:}(\psi), \quad i=1,2, \ldots, N ; \quad \mu_{l}=0, \quad l \geqslant N+1
$$

Then we obtain

$$
W(a, \psi)=\operatorname{ca} \exp \left\{\sum_{i=1}^{N} \psi_{i}(\psi) a^{i}\right\}
$$

This property will be shared by many mechanical systems with one degree of freedom whose non-linear part depends linearly on the velocity.

We shall consider, as an example, Eq. (I.l) when

$$
\begin{equation*}
f\left(x, x^{\prime}\right)=-f_{x}-\gamma^{3} ; \beta, \gamma>0 \tag{1.11}
\end{equation*}
$$

(Duffing's equation), In this case (2.6) yields

$$
\begin{align*}
& A_{1}=-\beta \sin ^{2} \psi, A_{2}=0, A_{3}=\gamma \omega^{-1} \cos ^{3} \psi \sin \psi \\
& D_{2}=-\beta \sin \psi \cos \psi, D_{2}=0, D_{9}=\gamma \omega^{-1} \cos ^{4} \psi \\
& A_{n}=0, D_{n}=0, n \geqslant 4
\end{align*}
$$

Substituting expressions (1.12) into (1.10), we can show that it admits of the following solution:

$$
\begin{aligned}
& \mu_{1}=\mu_{3}=0 . \mu_{2}=-\beta \omega^{2} \sigma^{-2} \\
& \mu_{4}=-1_{2} p \sigma^{-2} \cos ^{4} 4: \mu_{3}=0, s \geqslant 5
\end{aligned}
$$

Therefore the solution of (1.5) corresponding to the Duffing case (1.11) will be

$$
H\left\{a \cdot \psi \left\lvert\,=\operatorname{coexp}\left\{-\frac{\beta \omega^{2}}{5^{2}} a^{2}-\frac{\beta y^{\cos } 4}{2 \eta^{2}} a^{4}\right\}\right.\right.
$$

We note that solution (1.13) can also be obtained from the known solution of the fPKE corresponding to the Duffing case (1.1) by changing from the phase coordinates x, x^{\prime} to amplitude and phase coordinates $/ 2 /$.
2. Let us now use the methoc of solving the fpke giver in Sect.l, together with the principle of averaging, to study random osciliations of non-autonomous mechanical systems with one degree of freedom, with a randomiy varying srequency /3/, described by the following stochastic differential equation:

$$
\begin{align*}
& r^{n} \div\left\{\omega^{2}-\eta^{-} \varepsilon \sigma=\{t) \mid x=\varepsilon f\left(x \cdot x^{n}\right. \text {, wh }\right. \tag{i}\\
& f\left(x, z^{2} . \omega t\right)-\sum_{i=1}^{m} x, \sum_{0} x^{2} x^{j}-1 x^{2} \cos \omega_{t} \tag{2.2}
\end{align*}
$$

where $\because(t)$ is a random, white noise-type action of untt intensity. Usirg the substitutior (i. 3) where $\psi=w-\theta\left(\right.$ and $I t 0^{\prime} s$ formia, we reduce Eq. 2.2) to the standaxd form

$$
\begin{align*}
& \left.d a=-\frac{\xi}{\omega} y \sin \psi-\frac{\varepsilon=^{2} \cos ^{4} \psi}{2 \omega^{2}}\right] d t-\frac{\sqrt{\varepsilon}}{\omega} a \cos \psi \sin \psi d \xi(t) \tag{2.3}\\
& \left.d \theta--\frac{+}{a \omega} f \cos \psi-\frac{z^{2}}{\omega^{2}} \cos ^{2} \psi \sin \psi\right] d t-\frac{\sqrt{\xi}}{\omega} \cos \psi d \xi(t)
\end{align*}
$$

Let us write tre averaged fPKE correspondirg to (2.3) for the stationamy density of the amplitude an* pnase probaízities ! \ddagger, ε_{i}

$$
\frac{\partial}{\partial a}\left(\hbar_{1} H\right)-\frac{\partial}{\partial \theta}\left(A_{1} H\right)=\frac{1}{2} \frac{\hat{\partial}^{2}}{\hat{\partial} a^{2}}\left(K_{13} H\right)+\frac{\hat{\partial}^{2}}{\partial a \partial \theta}\left(K_{12} H\right)-\frac{1}{2} \frac{\hat{\sigma}^{2}}{\partial \theta^{2}}\left(K_{22} H\right)
$$

Taking intc account relatior, (2. 2), we obtain $/ 4 /$ expressions for $K_{1,} K_{2}, K_{21}, K_{12}, K_{22}$. Now, carrying out the substitution (1. ?) we obtain, as in sect. 1 , the equation fox $\partial \phi / \partial$. We seek the solution of this equation ir. the form of a polynomial with integral powers of the amplitude $a, i . e$.

$$
\begin{equation*}
q_{i n} \theta_{i}=i_{1} \ln a-\sum_{i=0}^{\infty} \mu_{i}(\theta) c^{i}+\ln c, \quad C>0 . \quad i_{1}=\operatorname{con}: t \tag{2,5}
\end{equation*}
$$

where $\mu_{1}(\theta)$ are unknow coefficiemts depenaing on the phase θ only. Finaliy, as in sect.i, we obtain the following equations for $i_{2} . \mu_{0} \mu_{1}, \ldots$

$$
\begin{equation*}
3 \mu_{2}-\frac{16 \mu_{1}}{5^{2}} \mu_{4}+33_{2}^{2}-x_{2}^{2}-\frac{16 \omega_{11}}{5^{2}} ; \frac{16 \omega n_{1}}{\sigma^{2}}-1=0 \tag{2.}
\end{equation*}
$$

$$
\begin{aligned}
& 3 \mu_{1}{ }^{n}+\left(6 \mu_{0}+\frac{16 \omega \beta_{1}}{\sigma^{2}}\right) \mu_{1}^{\prime}+\left(2 \lambda_{1}+\frac{16 \omega \eta_{1}}{\sigma^{2}}+1\right) \mu_{1}= \\
& \frac{16 \omega^{2}}{\sigma^{2}}\left\{-\frac{2 \eta_{2}}{\omega}+\frac{\gamma \sin \theta}{8 \omega}-\left(\frac{\eta_{2}}{\omega}+\frac{\gamma \sin \theta}{8 \omega}\right) \lambda_{1}+\left(\frac{\beta_{2}}{\omega}+\frac{3 \gamma \cos \theta}{8 \omega}\right) \mu_{0}{ }^{\prime}\right\} \\
& 3 \mu_{k}{ }^{\prime}+\left(6 \mu_{0}{ }^{\prime}+\frac{16 \omega \beta_{1}}{\sigma^{2}}\right) \mu_{k}^{\prime}+\left(k\left(k+2 \lambda_{1}-1\right)\right)+\left(\frac{16 \omega \eta_{2} k}{\sigma^{2}}+k\right) \mu_{k}= \\
& \frac{16 \omega^{2}}{\sigma^{2}}\left\{-\frac{(k+1) \eta_{k+1}}{\omega}+\left(\frac{\eta_{m}}{\omega}+\frac{y \sin \theta}{8 \omega}\right)(k-1) \mu_{k-1}-\right. \\
& \sum_{i=0, i=3}^{i+i=k+2} \frac{i \mu_{i} \eta_{\delta}}{\omega}-\frac{\eta_{k+1} \lambda_{1}}{\omega}-\left(\frac{\beta_{3}}{\omega}+\frac{3 \gamma \cos \theta}{8 \omega}\right)_{\mu_{k-1}^{\prime}}- \\
& \left.\sum_{i=0, i=3}^{+i=k+1} \frac{\beta_{s} \mu_{i}^{\prime}}{\omega}\right\}-\sum_{i=1, j=1}^{i+j=k} i \mu_{i} \mu_{j}-3 \sum_{i=1, j=1}^{i+j=k} \mu_{i}^{\prime} \mu_{j}^{\prime}, k=2,3, \ldots
\end{aligned}
$$

Thus we have obtained a closed system of differential equations which enable us to determine all λ_{1}, μ_{i} in succession. The arbitrary integration constants must be chosen from the condition for the function $\mu_{i}(\theta)$ to be periodic. The remarks concerning system (1.10) made in Sect. 1 also apply to system (2.6).
system (2.6) admits, in many cases, of an exact solution of the form

$$
\lambda_{1}=\alpha=\text { const, } \mu_{i}=\varphi_{i}(\theta), i=0,1,2, \ldots, N ; \mu_{j}=0, j \geqslant N+1
$$

Then we obtain the following exact solution of the FPKE (2.4):

$$
\begin{equation*}
\boldsymbol{W}^{\prime}(a, \theta)=C a^{\alpha} \exp \left\{\sum_{i=0}^{N} \Phi_{i}(\theta) a^{i}\right\}, C>0 \tag{2.7}
\end{equation*}
$$

We shall consider, as an example, a non-autonomous van-der-pol equation for the case when the eigenfrequency varies randomily

$$
\begin{equation*}
\left.x^{\cdot}+\left(\omega^{2}+\sqrt{\operatorname{eo}}\right\}(t)\right) x=\varepsilon\left\{\Delta x+\left(1-\beta x^{2}\right) x^{*}+\gamma x^{2} \cos \omega t\right\}, \omega^{2}-\varepsilon \Delta=v^{2} \tag{2,8}
\end{equation*}
$$

The computations yield

$$
\begin{aligned}
& K_{1}(a, \theta)=\frac{a}{2}-\frac{\beta a^{3}}{8}-\frac{\gamma a^{2} \sin \theta}{8 \omega}+\frac{3 J^{2}}{16 \omega^{2}} a \\
& K_{2}(a, \theta)=\frac{\Delta}{2 \omega}-\frac{i 3 \gamma a}{8 \omega} \cos \theta ; \quad \eta_{2}=-\frac{\omega}{2}, \quad \eta_{\theta}=0, \quad r_{0}=\frac{\beta \omega}{8} \\
& \eta_{i}=v_{1} \quad i=4,5, \ldots, \beta_{1}=-\frac{\Delta}{2}, \quad \beta_{j}=0, \quad i=2,3, \ldots
\end{aligned}
$$

In the present case system (2.6) has an exact solution

$$
\begin{align*}
& \lambda_{1}=\frac{8 \omega^{2}}{\sigma^{2}}+1, \quad \mu_{0}=\frac{8 \pm \omega}{3 J^{2}} \theta, \quad \mu_{1}=-\frac{2 \omega \gamma}{\sigma^{2}} \sin \theta \tag{2.9}\\
& \mu_{2}=-\frac{\beta \omega^{2}}{\sigma^{2}}, \quad \mu_{i}=0, \quad i=3,4, \ldots
\end{align*}
$$

However, for the function $\mu_{0}(\theta)$ to be periodic, we must put $\Delta=0$. Substituting (2.9) into (2.7) we obtain the exact solution of the FpKE corresponcing to Eq. (2.9), with the exact principal resonance

$$
\begin{align*}
& w^{*}(a, \theta)=a x \exp \left\{-\frac{2 \omega \gamma \sin \theta}{\sigma^{2}} a-\frac{\beta \omega^{2}}{\sigma^{2}} a^{2}\right\} \tag{2.10}\\
& x=8 \omega^{2} s^{2}+1
\end{align*}
$$

The probability density $w(a, \theta)$ attains its extremal value at the points where ∂W ion $=$ $\partial W / \partial \theta=0$.

Stability of the stationary random oscillations can be attained under the condition that W reaches its maximum. We note that in the present case $W(0, \theta)=0$, therefore the equilibrium position $x=0$ is unstable.

In general, the inequality $/ 3 / \lambda_{1}>0$ represents the sufficient condition of instability of the equilibrium position.
3. Let us consider a non-automomous mechanical system with one degree of freedom in the principal region of zesonance

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=\varepsilon\left[f\left(x, x^{\prime}, \omega t\right)-\Delta x\right]+\sqrt{\varepsilon} \sigma_{0}^{*}(t), \quad v^{2}=\omega^{2}+\varepsilon \Delta \tag{3.1}
\end{equation*}
$$

As in Sect. 2, the substitution (1.3) where $\psi=\omega t+\theta$ transforms Eq. (3.1) to its standard form and the corresponaing averaged FPKE, for the stationary probability density $W(a, \theta)$, take the form /4/

$$
\begin{equation*}
\frac{\partial}{\partial a}\left(K_{1} W^{\prime}\right)+\frac{\partial}{\partial \theta}\left(K_{2} W\right)-\frac{\theta^{2}}{4 \omega^{3}}\left[\frac{\partial^{2} W^{r}}{\partial a^{2}}+\frac{1}{a^{2}} \frac{\partial^{2} W}{\partial \theta^{2}}\right]=0 \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
& K_{1}(a, \theta)=M_{t}\left(\frac{\sigma^{2}}{2 a \omega^{2}} \cos ^{2} \psi-\frac{\sin \psi}{\omega}(f-\Delta a \cos \psi)\right)= \tag{3.3}\\
& \quad \frac{\sigma^{2}}{4 a \omega^{2}}-\frac{1}{\omega} M_{t}((\sin \psi) \\
& K_{z}(a, \theta)=M_{i}\left(-\frac{\sigma^{2} \sin \psi \cos \psi}{a^{2} \psi^{2}}-\frac{\cos \psi}{a \omega}(f-\Delta a \cos \psi)\right)= \\
& \frac{\Delta}{2 \omega}-\frac{1}{a \omega} M_{t}(f \cos \psi)
\end{align*}
$$

In (3.2) let us make the substitution of the function in question

$$
\begin{equation*}
W(a, \theta)=S(a, \theta) \exp \left\{\frac{4 \omega^{2}}{\sigma^{2}} \int_{i}^{a} K_{1}(a, \theta) d a\right\} \tag{3.4}
\end{equation*}
$$

Substituting expression (3.4) into (3.2) and carrying out simple transformations, we arrive at the following equation for the unknown function $S(a, \theta)$:

$$
\begin{align*}
& \left.\frac{\partial}{\partial \theta}\left(K_{2}-\frac{1}{a^{2}} \int_{1}^{a} \frac{\partial K}{\partial \theta} d a\right)+\frac{4 \omega^{2}}{\sigma^{2}} \int_{1}^{a} \frac{\partial K_{1}}{\partial \theta} d a\left(K_{2}-\frac{1}{a^{2}} \int_{1}^{a} \frac{\partial K_{1}}{\partial \theta} d a\right)\right] S- \tag{3.5}\\
& K_{1} \frac{\partial S}{\partial a}+\left(K_{2}-\frac{2}{a^{2}} \int_{1}^{a} \frac{\partial K_{1}}{\partial \theta} d a\right) \frac{\hat{\sigma} S}{\partial \theta}-\frac{\partial^{2}}{4 \omega^{2}}\left(\frac{\partial 2 S}{\partial a^{2}}+\frac{1}{a^{2}} \frac{\partial^{2} S}{\partial \theta^{2}}\right)=0
\end{align*}
$$

We see that this equation admits of the trivial solution

$$
S(a, \theta)=C, C=\text { const }, C>0
$$

provided that

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(K_{2}-\frac{1}{a^{2}} \int_{i}^{a} \frac{\partial K_{1}}{\partial \theta} d a\right) \frac{4 \omega^{2}}{5^{2}}-\int_{i}^{a} \frac{\partial K_{2}}{\partial \theta} d a\left(K_{z}-\frac{1}{a^{2}} \int_{i}^{a} \frac{\partial K_{1}}{\partial \theta} d a\right) \tag{3.7}
\end{equation*}
$$

or, in particular, if

$$
\begin{equation*}
\frac{\partial}{\partial a}\left(a^{2} K_{2}\right)=\frac{\partial K_{1}}{\partial \theta} \tag{3.8}
\end{equation*}
$$

Substituting here the epxressions for K_{1}, K_{2} from (3.3), we obtain the condition of integrability of the FPKE

$$
\begin{equation*}
\frac{\Delta a}{\omega}-\frac{1}{\omega} \frac{\partial}{\partial \partial a}\left\{a M_{i}(\{\cos \psi)\}=-\frac{1}{w} \frac{\partial}{\partial \theta}\left\{M_{i}(j \sin \psi)\right\}\right. \tag{3.9}
\end{equation*}
$$

When this condition holas, we obtain from (3.4), (3.6) the following solution for the corresponding FPKE:

$$
\begin{equation*}
W\left\{a, \theta j=C a \operatorname{exf} y-\frac{4 \omega}{\nabla^{2}} \int_{i}^{a} M_{1}[j(a \cos \psi-a \omega \sin \psi, \psi-\theta) \sin \psi] a\right\} \tag{3.10}
\end{equation*}
$$

It can be shown that the condition of integrability of (3.9) will be satisfied if/9/

$$
\begin{aligned}
& A=0, \alpha>0 \\
& f\left(x . x^{\prime}, \omega t\right)=\sum_{i=0}^{m}\left[c_{i}\left(x^{i}\right) x^{*}{ }^{i+1}+h_{i}\left(x^{\prime}\right) x^{n i}\right]-\alpha \operatorname{sig} n x^{2}+P \cos \omega t
\end{aligned}
$$

where $g_{i}(x), h_{i}\left(x^{\prime}\right)$ are pciynomiais in x and x^{\prime} respectively. Substituting (3.11) into (3.10), we obtain the solution of the corresponding FPKE (3.2).

Let us consider, as an example, the stochastic equation

$$
\begin{equation*}
x^{\prime \prime}+2 \varepsilon \alpha x^{x}+\omega^{2}(1+\varepsilon \lambda \cos 2 \omega t) x=\varepsilon P \cos v t+\sqrt{\varepsilon} \sigma \xi^{\prime}(t), \quad \alpha>0 \tag{3.12}
\end{equation*}
$$

Computations yield

$$
\begin{aligned}
& \kappa_{1}(a, \theta)=\frac{\sigma^{2}}{4 \alpha \omega^{2}}-\frac{P}{2 \omega} \sin \theta-\alpha \alpha+\frac{\omega_{i} a}{4} \sin 2 \theta \\
& x_{2}(a, \theta)=-\frac{P}{2 \alpha \omega} \cos \theta+\frac{\omega \lambda}{4} \cos 2 \theta
\end{aligned}
$$

It can be shown that in this case the condition of integrability of (3.8) holds. From the solution of FPKE corresponding to the equation (3.12)

$$
W(a, \theta)=C a \exp \left\{-\frac{2 \omega P}{J^{2}} a \sin \theta-\frac{\omega^{2}}{2 J^{2}}(4 a-\omega \lambda \sin 2 \theta) a^{2}\right\}
$$

it follows that the sufficient condition for a steady random oscillation to exist is that $4 a>\omega|\lambda|$
The above inequality serves as the condtion of stability of system (3.12) when there are no external forces $/ 1 /$.

REFERENCES

1. BOGOLYUBOV N.N. and MITROPOL'SKII YU.A., Asymptotic Methods in the Theory of Non-linear Oscillations. Moscow, Fizmatgiz, 1963.
2. BOLOTIN V.V., Random Oscillations of Elastic Systems. Moscow, Nauka, 1979.
3. DIMENTBERG M.F., Non-linear Stochastic Problems of Mechanical Vibrations. Moscow, Nauka, 1980.
4. MITROPOL'SKII YU.A. and KOLOMIETS V.G., The use of asymptotic methods in stochastic systems. In: Approximate Methods in the Study of Non-linear Systems. Kiev, Izd-vo In-ta matem. Akad. Nauk UkrSSR, 1976.
5. NGUEN DONG AN., On the problem of studying random oscillations using the method of fokker-Planck-Kolmogorov equations. Compendium of Research Papers on Mechanics. Izd-vo NTSNI of Vietnam, 1978.
6. NGUEN DONG AN., Some method of integrating the Fokker-Planck-Kolmogorov equations in the theory of random oscillations. Ukr. matem. zh., Vol.33, No.1, 1981.
7. NGUEN DONG AN., On the problem of solving the Fokker-Planck-Kolmogorov equations for nonautonomous systems under the action of periodic and random forces. Ukr. matem. zh . Vol. 34, No.4, 1982.
8. KHAS'MINSKII R.Z., A limit theorem for solving differential equations with the random righthand side. Theory of probability and its applications. Vol.11, No. 3, 1966.
9. NGUEN DONG AN., Random oscillations of a mechanical system with one degree of freedom, under the action of a periodic force and "white noise". Ukr. matem. zh., Vol.34, No.5, 1982.
