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ON THE STUDY OF RANDOM OSCILLATIONS IN NON-AUTONOMOUS MECHANICAL SYSTEMS USING
THE FOKKER-PLANCK-KOLMOGOROV EQUATIONS

NGUEN DONG AN

A method of integrating the FPokker-Plank-Kolmogorov egquations (FPKE) used
in the theory of random oscillations /1-4/ is proposed. The Duffing
equation is first studied as an example. The method is then used, together
with the methced of averaging, to study random oscillations of non-autonomous
mechanical systems with one degree of freedom when the eigenfrequency varies
in a random manner. The Van-~der-Pol eguation is considered for the case

of a randomly varying eigenfreguency and periodic parametric excitation.
When the function sought is replaced, the FPKE transform into another
eguation whose trivial solutions have the corresponding particular solutions
of the FPKE. The condition of integrability of the FPKE is obtained as

the direct conseguence of the change in guestion.

1. cConsider a mechanical system with one degree of freedom, whose motion is described
by the following stochastic eguation:
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where I (1 is a random, white noise-type action of unit intensity. Using the substitution
z= acosy. 7 = ~awSiny 1.3
and the Itc formula, we reduce BEg. (1.1 to the form 4/
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Let us write the FPXE corresponding to system (1.4) for the stationary probability density
of the amplitude and phase W {a. ¥
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Taking into account the expression for f(z ) (1.2), we obtain
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Let us make the substitution
W(a. §) = exp {®ia. )} (1.7)

Taking into account the identities
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we transform Eq. (1.5) to the form
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The problem consists of sclving the non-linear partial differential equation (1.8) whose
coefficients are found from (l1.6). First we note that the amplitude a, in Eg. (1.8) with the
coefficients (l.6),can play the part of the generalized ignorable coordinate /5—7/ (the coef-
ficients of the eguation are polyromials with integrazl powers of the amplitude a). Consequently,
using the method of expansion in series in terms of the generzlized ignorable coordinate /5-—7/,
we can also find the solution of (1.8) in #®/se in the form of a polynomial containing integral
powers of the amplitude a. Then we have

Q@ ¥)=InC+lat ¥y e, C=const, C>0 (1.9
1=1

Substituting the expressicns for ¢ from (1.9) and for the coefficients B. B,. By;. By, Bu
from (l1.6) into (1.8), and eguating the coefficients cf o % o}, a% a'.. .., we obtair the fcllowing
set of equaticns for the unknown p;. . py... (& prime denctes differentiation with respect to
¥)
52 . 52 Qa ) 1.10}
Tz (cos?{ — 2sin?y{) + Tt (2sin?¢ —cos2y) =0 ( o}
62 cos? ¢
Tt T W) = 0
52 cod\l
w?

32 sin cos? § .

el 2“ R S <m\lco<wa

L
Lok . o 3(t—sin2y)
w? P) = s’ — 2 sin § cos Y, *—_2——}‘:,)

Po” — sin§ cos Yuo' - pr \—041 W=Dy —

2
34, (§) + Dr’ (§) = A () s — 5 [2 5in? Ypypg — cost ¥y +

2 sin ¥ cos Yy po + sin ¥ cos ] = (@ — Dy (§) i’
62 (cos*\t‘

= Bjo = (n = 1) sin ¥ cos ¥p, ., +

n-—2

(1 = nsin?§)p, )= (n - 2) A, (V) +
iFs=ndl
D= O LA, m =D m ]
=1
itj=nte itj=n=2 | iHj=na2
52 '5in2‘w . N X . , €Ot '
OB, =3 —3 . i, —sinycosy L
- =1 =1 =1

pi’pj'J y n=2.3,...




394

The differential equations of this system are separable in p and enable all the TP
My -- to be found in succession. The arbitrary integration constants must be chosen from
the condition for the functions pu;(y) to be the periodic. The problem of the convergence of
the series (1.9) is nct easy, and system (1.10) must, in general, be considered separately.

We shall merely note that the problem of convergence does not arise in cases when system
{1.10) admits of an exant solution of the form

=g, ), i=4,2,.. N g=0 IZN+1
i L, () e Ny s Iz :
Then we obtain
N
't by — e oo JOY o g )
sk =taexpy g, §,(Wey

w.
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This property will be shared by many mechanical systems with one degree of freedom whese
non-linear part depends linearly on the velocity.
We shall consider, as an example, Eg. (1.1} when

fla, 2y = —Br — 32% £, ¥ > 0 .1
(Duffing’s equation). 1In this cass (1.6) yields
Ay = —~Bsin’y¥, 4y =0 4;= el o Painy (1.12)
D, = —~Bsingpcosy, D, = 0, Dy = yw? coshy
An=10 D,=0, n>4
Substituting expressicns (1.12) into (1.10), we can show that it admits of the following

solution:
= gy = Oy = —fatom?
fy = —2oBv0F cosf Y o= 0, 522 5

Therefore the sciuticon of (1.3} corresponding to the Duffing case (1.11) will be

a? —

. e s eost Y
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We note that scolution (1.13) can alsc be obtained from the known solution cf the FPKE

corresponding to the Duffing case (1.1) by changing from the phase coordinates z, 7 to
amplitude and phase coordinates /2/.

2. Let us now use the method of solving the FPKE given in Sect.l, together with the
principle of averaging, to study random oscillations of non-autonomous mechanical systems with
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stochastic differential equation
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where § (0 is a random, white noise-type action of unit intensity. Using the substitution
a2, we reCuce Eg.{Z.1l) tc the standard form

(1.2} where v = @t~ 8{ and Itc's form
£ oty y’;: . (2.2
da = ,_-J‘"’Fm\;— Tt }dim peS a cos ¥ sin ¥ dE(E) {2.2)
. B B 1 ‘/_
ob — -~ _ETu—f cos Y — cos? ¢ sin ¥ | dt e cor2y df (1)

Let us write the averaged FPKE correspending te (2.3) for the stationary density of the
.

amplitude and phase probatilities /3, g/

¢ . 6 a2 T T I ..
e A Y o e (A Y ey e (A W) oy (Rl - - =55 (Rl (2.4)
ga on 2 da? ga ov & oW
Taking intc account relaticn {2.2), we obtain /4/ expressions for K, K, X, Kp, Kw. Now,
carrying out the substituticn {(1.7) we obtain, as in Sect.l, the eguation for A®iz.  We
seek the solutich of this eguaticon ir the form of a polynemial with integral powers of the

amplitude a, i.e.

Viu, B s ) nc«—zu (e =~InC, 0. k= const (2.5)
i=p
where p; (6) are unknown coefficients depending on the phase @ only. Finally, as in Sect.i,
we obtain the following eguatione for i, peo m
18wp 16wy 16wy e
3. — PK e BT — 5% e i _‘,,__.._}l_ L X




395
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Thus we have obtained a closed system of differential equations which enable us to
determine all Ay, p; in succession. The arbitrary integration constants must be chosen from
the condition for the function y;{8) to be periodic. The remarks concerning system {1.10)

made in Sect.l alsoc apply to system (2.8).
System (2.6) admits, in many cases, of an exact solution of the form

M=a=const, p= ¢ (@), i =042, . Nipy=0 j2N+1
Then we obtain the following exact solution of the FPKE (2.4):
N .
W, 8)=Ca®exp {3 ¢,(0)a'}, C>0 (2.7)
=0

We shall consider, as an example, a non-autonomous Van-der-Pol equation for the case when
the eigenfrequency varies randomly

27 4 (0 4 Veol ()2 = e {Az 4 (1 — Pad)z - y¥cos wt}, ©f — eA = v? 2.8)
The computations yield .
a pa® Ya? sin 6 352
@l =g g+t
A i3ya ©
Ky (a, 8) = 75’—-—-8-0)-005.8; th=—F., m=0 mg%)-
; A
=y, i=45 ..., ﬁ;:——é-, ﬁjzﬂ, 1=23 ...
In the present case system (2.6) has an exact solution
8uw? 8iw 20y
3':=";§“+1, o= F57~ 8, Py - 5: sin B (2.9)
%z
b=t =0, 1=3,4,

However, for the function p,(d) to be periodic, we must put A =0 Substituting (2.9)
intc (2.7) we obtain the exact sclution of the FPKE corresponding to Eg.{2.9), with the exact

principal resonance

i 2
W (g, 8) = axexp {—3{‘%&6‘6—- Bo a’} (2.10)

5%
¥ = 8p2s~? 4
The probability density Wi{s, 8) attains its extremal value at the points where 4W/oao =

aWw/é8 = 0.
Stability of the stationary random oscillations can be attained under the condition that
W reaches its maximum. We note that in the present case W (0, 8) =0, therefore the equilibrium

position z=0 is unstable.
In general, the inequality /3/ >0 represents the sufficient condition of instability

of the equilibrium position.
3. Let us consider a non-automomous mechanical system with one degree of freedom in the
principal region of resonance

2 4 0tz = elf (z, 2, of) — Az} + Veot’ (1), V= @b ed (3.1

As in Sect.2, the substitution (1.3) where ¢y = wt4 8 transforms Eg.(3.1) to its standard

form and the corresponding averaged FPKE, for the stationary probability density W (s 8), take
the form /4/

o [am' 1 am'J= (3.2}
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In (3.2) let us make the substitution of the function in guestion
(3.4)

i 42 ¢
W (a, 8) = S (a, 6) exp {—5-;' S K (a, B)da}
1

Substituting expression (3.4) into (3.2) and carrying out simple transformations, we

arrive at the following eguation for the unknown function S (s 8

a a a
- 1 8k 4ot { 8K, . i (8K, V1
Lar (Fem e (S ae) + 55 (S5 v (m— 5 (Faa) I s - (3.5)
1 1
o 95 (e 2{oK oS o ms 4 o
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1
We see that this eguation admits of the trivial solution
Sta, 8=, £ = const, C>0 13,63
provided that
5 1 ¢ ok G? Ak :
R U A L. w? A 1 oK N
56 (}‘2“ aib e d“) 5t *5%’5“’“@2“'{2’5 75 5“) (3.7
1 1 3
or, in particular, if
é 2.9
-é-a—(azf\:):ma] (3.8)

Substituting here the epxressions for K, K,
integrability of the FPKE

Ae
a3
Whern this condition hclds, we obtain from (2.4), (3.6) the following sclution for the

corresponding FPKE:
(2.0}

a
o ¢ , o
Woie. 8 = Caexp ik.—'-;‘;i anz 7 {a cos §.— @ sin . ¥ — 8) sin ¥] aa}
1

It can be shown that the condition of integrability of {3.92) will be satisfied if /9/
(2.1

A=0, a>0
m .
fla o) = 3 e @™ k@2 ] — asigne’ + Pcoswt
fe=0
where g: (z), b () are pclynomials in 7 and 1 respectively. Substituting (3.11) into (3.10},
we obtain the sclution cf the corresponding FPKE (3.2).
Let us consider, as an example, the stochastic eguation
2 - Zeaz - @f (1 4 &k cos 2wt)z = ePcoa vt 4 Vet (1, a>0 (3.12)
Computations yield
. 3? P C wha |
Kifa, 8)= g — 5 sm@-——-uu-r—z*zm%
P A
Ky(a, 0) = — 5o cose+—“’,‘—- cos 20
From

It can be shown that in this case the condition of integrability of (3.8} holds.
the solution of FPKE corresponding to the eguation (3.12)

2wP w? X
W (ay 8) = Caexp xi- 7 @ sin 8 — 537 (4a — wk sin 28) u”}
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follows that the sufficient condition for a steady random oscillation to exist is that
4a> 0|k
The above inequality serves as the condtion of stability of system (3.12) when there are
external forces /1/.
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